Notes on Elementary Spectral Graph Theory. Applications to Graph Clustering Using Normalized Cuts
نویسنده
چکیده
These are notes on the method of normalized graph cuts and its applications to graph clustering. I provide a fairly thorough treatment of this deeply original method due to Shi and Malik, including complete proofs. I include the necessary background on graphs and graph Laplacians. I then explain in detail how the eigenvectors of the graph Laplacian can be used to draw a graph. This is an attractive application of graph Laplacians. The main thrust of this paper is the method of normalized cuts. I give a detailed account for K = 2 clusters, and also for K > 2 clusters, based on the work of Yu and Shi. Three points that do not appear to have been clearly articulated before are elaborated: 1. The solutions of the main optimization problem should be viewed as tuples in the K-fold cartesian product of projective space RP^{N-1}. 2. When K > 2 , the solutions of the relaxed problem should be viewed as elements of the Grassmannian G(K,N). Disciplines Computer Engineering | Computer Sciences Comments University of Pennsylvania Department of Computer and Information Science Technical Report No. MSCIS-13-09. This technical report is available at ScholarlyCommons: http://repository.upenn.edu/cis_reports/986 Notes on Elementary Spectral Graph Theory Applications to Graph Clustering Using Normalized Cuts Jean Gallier Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: [email protected]
منابع مشابه
A comparative performance of gray level image thresholding using normalized graph cut based standard S membership function
In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...
متن کاملA Feature Space View of Spectral Clustering
The transductive SVM is a semi-supervised learning algorithm that searches for a large margin hyperplane in feature space. By withholding the training labels and adding a constraint that favors balanced clusters, it can be turned into a clustering algorithm. The Normalized Cuts clustering algorithm of Shi and Malik, although originally presented as spectral relaxation of a graph cut problem, ca...
متن کاملBeyond Spectral Clustering - Tight Relaxations of Balanced Graph Cuts
Spectral clustering is based on the spectral relaxation of the normalized/ratio graph cut criterion. While the spectral relaxation is known to be loose, it has been shown recently that a non-linear eigenproblem yields a tight relaxation of the Cheeger cut. In this paper, we extend this result considerably by providing a characterization of all balanced graph cuts which allow for a tight relaxat...
متن کاملBipartition of graphs based on the normalized cut and spectral methods
In the first part of this paper, we survey results that are associated with three types of Laplacian matrices:difference, normalized, and signless. We derive eigenvalue and eigenvector formulaes for paths and cycles using circulant matrices and present an alternative proof for finding eigenvalues of the adjacency matrix of paths and cycles using Chebyshev polynomials. Even though each results i...
متن کاملSpectral Algorithms for Temporal Graph Cuts
The sparsest cut problem consists of identifying a small set of edges that breaks the graph into balanced sets of vertices. The normalized cut problem balances the total degree, instead of the size, of the resulting sets. Applications of graph cuts include community detection and computer vision. However, cut problems were originally proposed for static graphs, an assumption that does not hold ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1311.2492 شماره
صفحات -
تاریخ انتشار 2013